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Fast Multidimensional Density Estimation based on Random-width Bins
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Abstract

Histogram-type density estimators have some
notable computational advantages over other forms of
density estimation by virtue of the WARPing
algorithm. However, traditional fixed-bin-width have
less than satisfactory smoothing properties, being too
coarse in regions of high density and too fine in
regions of low density. Scott (1992) suggests the ASH
algorithm as a means of overcoming these problems,
but the ASH algorithm is computationally intensive
somewhat negating the benefits of WARPing.
Wegman (1975) proposed a variable bin-width
technique for one dimensional density estimators and
used sieve-type methods to show strong consistency
results that did not depend on smoothness properties
of the underlying density. In this paper, we extend
this idea to high-dimensional, variable bin-width
meshes. The boundaries of the bins are determined
by a random subsampling of the observations. An
extension of the WARPing algorithm may still be
used for fast computation. We give combinatorial
arguments for calculating the number of bins and also
the conditional expectation and variance of the
number of observations per bin. Conditional on the
random hyper-rectangular tessellation, we calculate
the maximum likelihood density estimator.

Introduction
In this paper, a density estimation method is

developed that is computationally more tractable than

kernel density methods, and has better smoothing
properties than traditional fixed binning methods.
The basic method is easy to describe in one
dimension. Randomly select a subset of m
observations {Y*} from a set of n observations {Y},
m < n, together with the maz{Y'} and min{Y'}. Order
the set {Y*} in the set {YEk )}. A set of random
width bins {B} can be can be constructed using
adjacent elements in the set {Y("' )}. Then attribute
the probability mass of all observations in {Y'} to the
bins in {B}. The probability density on an element
B, €{B} is the relative probability mass on B,
divided by the length of B;, cf. Wegman (1975) and
Hearne and Wegman (1991). There are many ways to
generalize these results to a d-dimensional support
space. The generalization that we have adopted here
is to define random-width d-dimensional rectangular
bins generated by a random sample from the set of

observations.

Random-width d-Dimensional Bin Tessellation
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Given a set of n observations, {Y}, in a d-
dimensional Euclidian space, let Ai be the minimum
d-dimensional rectangular cover of {Y}L Each
observation Y, €{Y} can be written in the form
Yj=(Y},Y§,---,Y§). Then A¢ can be defined by
the set of maximum and minimum values for the d

coordinate axes,

Ag = {z eR: 2 > min(Yi)A < ma:c(Y‘)}.

A d-dimensional rectangular tessellation of A‘fl
can be generated by selecting a random subsample of
N observations {S N} from {Y}. For each of the d
coordinate axes let { }V} be the set of the i*P
coordinate for all Y € {Sy} together with maz(Y?)
and min(Y*). Let {S(' )} be the ordered set of unique
elements in {S}V} and s' = card{S("_ )}. A set of one
dimensional bins, {Bi}, can be generated for each of
the d coordinate axes by adjacent elements in the set
{Sé,)}, and card{Bi}=3i~1. The d-dimensional
rectangular random tessellation {B‘fv} of A‘fl can then
be generated by the cross product of the sets of one

dimensional bins for each coordinate axis;

{Bﬁ}:{Bl}x{Bz}x-ux{Bd}, and

m= card{B‘f‘ =.141 (s'=1).

i=1

The upper bound on the cardinality of the set of
one dimensional bins that are generated for each of
the coordinate axes is s —1< N +1, 1 <i<d, since
the random sample {S N} may have observations that
contain maz(Yi) or nlin(Y‘), observations are
recorded only to finite precision, and computers
operate on a subset to the rational numbers. The
cardinality of the tessellation {Bji\,} then has an
upper bound, given the random subsample {S y} of

m= card{Bz =.14[ (s =1) <(N+ 1),

1=1

In Figure 1 a set of observations {Y'} in %2 have
values ma:c(Yl), min(Yl), ma:c(Yz), and min(Y2).
These values define the minimum 2-dimensional
rectangular cover Ai of {Y}. A random subsample of
observations is drawn from {Y}, {53}E(p1,p2,p3).
These three points together with the maximum and
minimum values for each of the coordinate axes

generate the set of bins {Bi} of Ai.

Al
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P3
L
m?Ps
]
P1
[
min(Yz)
min(Y?) maa(Y?1)
Figure 1

The tessellation { B4} of Ad is adaptive in the
sense that the elements of the tessellation tend to be
large where the observations are sparse and small

where the observations are not sparse.

Conditional Expectation and Variance of the Number
of Observations per Bin

Let B, 1<k <m, be the ktP d-dimensional bin
in the tessellation { B4} of Ad, and let Z, be the

J

number of observations in {Y'} that are in By. The

expected value of Z; given the tessellation {Bg} is 15

the number of observations that might be attributed
to the k' bin times the probability that the d--—

dimensional random variable X is in the ktP bin;

E‘[Zk |{B;’,}] =(n— N)P(X € By).




Let U%, 1<i<d, be the empirical probability

-th

mass on the j one dimensional bin,

1<j5< st — 1, for the ith coordinate axis,
vi=F(Y{;_1)-F(¥{;)= P(x'e B} |{B})

Using order statistical arguments, cf. Rohatgi

(1976) pp.575-580, it can be shown that;

E'[U'|{B' ]:——— 1<j<s'—1, and
v[vi 1{B}]= C"i}.:l—%l’—s'

Since the tessellation {B‘fl} of A‘fl is generated by the
cross product of the one dimensional bins on each of
the d coordinate axes then the probability mass that
is on a given d-dimensional bin B € {B } given the
tessellation {B } is;

E[Ukl{B:}] =iljls" 1— 1

ool f e

Multiplying by the number of observations that might

1<k <m, and

be attributed to a d-dimensional rectangular bin,
n—N, and applying the inequality bounding the

cardinality of the number of bins in the tessellation;

d n—N
E[Zk]{Bn}]Zm, 1<k<m, and

AUl (n=NAN-1)0
V{Z"'{B"}]Z NN+ 17

A Class of Probability Density Estimators

Let n be the number of observations in the set of
observations {Y}, and let n; be the number of
observations in the k" rectangular bin in the
tessellation {BA}. Let W(Ny) be the probabilistic
mass of observations in the tessellation generating set

{SN} that are attributed to an adjacent bin in the

tessellation BkE{B } by the function W(.). And
let C), be the d-dimensional content of the kth
element of the tessellation. Then we can define a
class of probability density estimators on a

tessellation {Bg} by;

~ n,.+W(N
f(zEBk)z—kT-C—,(k—L) and

f(z ¢ {B;{}) =

This class of probability density estimators is
constant on each bin in the tessellation, and the
content of each of the d-dimensional bins in the
tessellation C|, is easily computed. The probabilistic
mass attribution function W(-) is closely related to

the likelihood function.

The Likelihood Function

The likelihood function was introduced as a
means for optimizing the parameter values in the
parametric density estimation setting so that the
fitted parametric function would best fit a set of
observations. In the nonparametric setting the
likelihood function has utility if there is a variable in
the class of density estimators. The weight that is
attributed to bins in the tessellation by observations
in {S N} is variable and can be used to optimize the
likelihood function.

The likelihood function for this class of

probability density estimators is

n n.+W(N
“ =jl;Il : "'C(k k)’

the product of the density estimates for each of the

observations. But the class of density estimators that

are presented here are estimators on the set of bins in

the tessellation of A‘,{ so the likelihood function can be

reformulated in terms of the elements of the




tessellation;

m [n,+W(N)\Yn, +W(N
B ERIIER WY
k=1 Ly

Taking the first derivative of the log of the
likelihood function with respect to W(N,);

W(Ny) )

N
Ty O El(wwwk) m T W(N,)

+ kgl (Iog(nk + W(N,)) —log(n- Ck))-

If the first derivative is set equal to zero and solved
for W(N,) then the estimator will be optimized,
either maximized or minimized depending on the sign
of the second derivative of the log of the likelihood
function. Taking the second derivative of the log of
the likelihood function;

_d* logl(z) = 'zn: L

dW(N ) k=1 + W(N)

The second derivative of the log of the likelihood
function with respect to W(N ) is positive on all bins
in the tessellation that have observations in them,
n; > 0, and is undefined where n; = 0. The likelihood
function is thus convex and the likelihood function is
maximized when the probabilistic mass of all

observations in {Sp} are attributed to the adjacent

1
bin where 2k will be largest.

Ck

A Random Bin-width Warping Algorithm

For the proposed probability density estimation
method to be of utility it is important that density
estimates be readily computable, given a set of n
observations, {Y'}, in a d-dimensional Euclidian space.
The principal computational complexity is in the
attribution of observations to bins in the tessellation,

{B:}, of the minimum d-dimensional rectangular

cover of {Y'}, Az. In conventional fixed width binning
methods an algorithm called warping has been
developed that increases the speed and reduces the
computational complexity for attributing observations
to bins in the tessellation. This algorithm has been
extended to variable bin-width tessellations.

Given N the number of observations in the
random sample of observations used to generate the
rectangular bins in the tessellation, the cardinality of

the set of bins, m, is bounded by;

H(s —l)

m= card{B‘fl
i=1

<(N+1)

For each coordinate axis there is an upper bound on
the number of one dimensional bins that can be
generated. Let Bound_Valuesli, j] be a matrix with
the itP row, 0<i<d, corresponding to {Sé,)} and
Bound__Value[i,0]=min(Yi). Then for each row i,
0<j< s*—1. Let Bin_Index[i,k] be a matrix with
the i*" row a vector of integer indices into the matrix
Bound_ Values[i, j], with 0 <k < w', where w' is the
selected number of warping indices for the ith
coordinate axis, s' — 1 < w'.

Let b' = min(Y?) and o' = mfw(Y")—i min(Y?)
w

for

the it? coordinate axis, 0 <i<d. For any point

= [min(Yi), ma:c( Yi)] then the value

Index = TruncatEI:(—mt_;—i)}

a

is an integer in the range 0 < Index < w'. Let the ith

kth

coordinate axis and the entry in the matrix

Bin_Index[i,k] be the smallest index j into the

matrix Bound_Values[t, j] such that
a'(Index + b') < Bound_ Values][i, j].

Then an efficient algorithm to compute the bin index




for the it coordinate axis, 0 < i < d, is shown in the

following code fragment.

Get_Bin_Index(i, ")

Table_Index = Truncate((:ci - bi)/ ai)

Index = Bin_Index[i, Table_Index]

While(z* > Bound_ Values[i, Index]) Index-++

Return Index

The size of the number of warping indices, wi, is

specified by the user of the density estimation
method. The question of how large w* should be is of
interest. We want to maximize the probability of
selecting the correct bin index on the first attempt for
each of the d coordinate axes. The bounds on the
probability of selecting the correct bin index on

the first attempt is;

P(z' < Bound_Values[i,Bin_Index[i, Table_Index]])

>wi—si+1
iy w‘ .

The larger w' is relative to si—l, the larger the
probability that the correct bin index will be
computed on the first attempt. If the density

function is symmetric then the expected value of the
w — (st — 1)/ 2

wl

probability is

Conclusions and Extensions

Random-width  binning  methods are a
computationally tractable alternative to fixed-width
binning methods. The size of the bins in a d-
dimensional space are adaptive so that the bins will
tend to be large where the observations are sparse and
small where the observations are not sparse. Bounds
on the expected value and variance of the number of

observations that are attributed to each bin can be

calculated, given the size of the subsample that is
randomly selected from the set of observations to
generate the d-dimensional bins.  The likelihood
function is convex a function that can be maximized
or minimize to give a maximum entropy estimate by
selecting the appropriate probabilistic =~ weight
distribution function W(-), c¢f. Hearne and Wegman
(1992). By applying an extension to the WARPing
algorithm, the computational complexity of the
random-width binning method is only slightly more
computationally intensive than fixed-width binning
methods.

One of the natural extensions to random-width
binning methods is to apply a resampling scheme, cf.
Billard and LaPage (1992). Given smoothness
assumptions about the underlying probability density,
then the size of the set of observations, the dimension
of the observations space, and the expected value and
variance bound on the number of observations that
are attributed to each bin might be used to find the
optimal subsample size, and the number of resampling
repetitions necessary to achieve the desired density
estimate smoothness. Resampling in an optimal way
is believed to be less computationally intensive than

either kernel or ASH methods, cf. Scott (1992).
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